341 research outputs found

    Wilson Expansion of QCD Propagators at Three Loops: Operators of Dimension Two and Three

    Full text link
    In this paper we construct the Wilson short distance operator product expansion for the gluon, quark and ghost propagators in QCD, including operators of dimension two and three, namely, A^2, m^2, m A^2, \ovl{\psi} \psi and m^3. We compute analytically the coefficient functions of these operators at three loops for all three propagators in the general covariant gauge. Our results, taken in the Landau gauge, should help to improve the accuracy of extracting the vacuum expectation values of these operators from lattice simulation of the QCD propagators.Comment: 20 pages, no figure

    The NNLO gluon fusion Higgs production cross-section with many heavy quarks

    Full text link
    We consider extensions of the Standard Model with a number of additional heavy quarks which couple to the Higgs boson via top-like Yukawa interactions. We construct an effective theory valid for a Higgs boson mass which is lighter than twice the lightest heavy quark mass and compute the corresponding Wilson coefficient through NNLO. We present numerical results for the gluon fusion cross-section at the Tevatron for an extension of the Standard Model with a fourth generation of heavy quarks. The gluon fusion cross-section is enhanced by a factor of roughly 9 with respect to the Standard Model value. Tevatron experimental data can place stringent exclusion limits for the Higgs mass in this model.Comment: 14 pages, 1 tabl

    Optimal renormalization and the extraction of strange quark mass from semi-leptonic τ\tau-decay

    Full text link
    We employ optimal renormalization group analysis to semi-leptonic τ\tau-decay polarization functions and extract the strange quark mass from their moments measured by the ALEPH and OPAL collaborations. The optimal renormalization group makes use of the renormalization group equation of a given perturbation series which then leads to closed form sum of all the renormalization group-accessible logarithms which have reduced scale dependence. Using the latest theoretical inputs we find ms(2GeV)=106.70±9.36 MeVm_s(2{\rm GeV}) = 106.70 \pm 9.36~{\rm MeV} and ms(2GeV)=74.47±7.77 MeVm_s(2{\rm GeV}) = 74.47 \pm 7.77~{\rm MeV} for ALEPH and OPAL data respectively.Comment: 3 pages, Contribution to the proceedings of the XXII DAE-BRNS High Energy Physics Symposium, University of Delhi, Dec. 12-16, 201

    Simultaneous decoupling of bottom and charm quarks

    Full text link
    We compute the decoupling relations for the strong coupling, the light quark masses, the gauge-fixing parameter, and the light fields in QCD with heavy charm and bottom quarks to three-loop accuracy taking into account the exact dependence on mc/mbm_c/m_b. The application of a low-energy theorem allows the extraction of the three-loop effective Higgs-gluon coupling valid for extensions of the Standard Model with additional heavy quarks from the decoupling constant of αs\alpha_s.Comment: 30 page

    O(alpha_s^2) corrections to fermionic Higgs decays in the MSSM

    Full text link
    We compute the two-loop corrections of O(alpha_s^2) to the Yukawa couplings in the framework of the Minimal Supersymmetric Standard Model (MSSM). The calculation is performed using the effective Lagrangian approach under the approximation of neglecting the Higgs boson mass with respect to the top quark, gluino and all squark flavour masses. As an application we derive the O(alpha_s^2) corrections to the partial decay width of the lightest Higgs boson to a bottom quark pair. We find that the two-loop corrections are sizable for large values of tan_beta and low CP-odd Higgs boson mass. With our calculation of the O(alpha_s^2) corrections the remaining theoretical uncertainties reduce below a few percent.Comment: 22 pages, 10 figure

    Application of the DRA method to the calculation of the four-loop QED-type tadpoles

    Full text link
    We apply the DRA method to the calculation of the four-loop `QED-type' tadpoles. For arbitrary space-time dimensionality D the results have the form of multiple convergent sums. We use these results to obtain the epsilon-expansion of the integrals around D=3 and D=4.Comment: References added, some typos corrected. Results unchange

    Chiral corrections to the SU(2)×SU(2)SU(2)\times SU(2) Gell-Mann-Oakes-Renner relation

    Get PDF
    The next to leading order chiral corrections to the SU(2)×SU(2)SU(2)\times SU(2) Gell-Mann-Oakes-Renner (GMOR) relation are obtained using the pseudoscalar correlator to five-loop order in perturbative QCD, together with new finite energy sum rules (FESR) incorporating polynomial, Legendre type, integration kernels. The purpose of these kernels is to suppress hadronic contributions in the region where they are least known. This reduces considerably the systematic uncertainties arising from the lack of direct experimental information on the hadronic resonance spectral function. Three different methods are used to compute the FESR contour integral in the complex energy (squared) s-plane, i.e. Fixed Order Perturbation Theory, Contour Improved Perturbation Theory, and a fixed renormalization scale scheme. We obtain for the corrections to the GMOR relation, δπ\delta_\pi, the value δπ=(6.2,±1.6)\delta_\pi = (6.2, \pm 1.6)%. This result is substantially more accurate than previous determinations based on QCD sum rules; it is also more reliable as it is basically free of systematic uncertainties. It implies a light quark condensate 2GeV=(267±5MeV)3 \simeq \equiv |_{2\,\mathrm{GeV}} = (- 267 \pm 5 MeV)^3. As a byproduct, the chiral perturbation theory (unphysical) low energy constant H2rH^r_2 is predicted to be H2r(νχ=Mρ)=(5.1±1.8)×103H^r_2 (\nu_\chi = M_\rho) = - (5.1 \pm 1.8)\times 10^{-3}, or H2r(νχ=Mη)=(5.7±2.0)×103H^r_2 (\nu_\chi = M_\eta) = - (5.7 \pm 2.0)\times 10^{-3}.Comment: A comment about the value of the strong coupling has been added at the end of Section 4. No change in results or conslusion
    corecore